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GAS CHANNEL FORMATION STUDIES INCLUDING
REAL-AIR THERMODYNAMIC PROPERTIES

1. Introduction

Hot reduced-density channels can be formed in gases by methods such

1 2 3as exploding wires , lasers , pulsed electrical discharges , or charged4I
particle beams 4 . In many cases, the heating occurs very rapidly com-

pared to the hydrodynamic response time of the gas (the sound transit

time over the channel radius), and can thus be treated as instantaneous.

Furthermore, cooling due to heat conduction and radiation is slow, for

many applications, and can be neglected in treating the hydrodynamic

response. Under these conditions, channel formation is a one-

dimensional hydrodynamic process which departs from adiabaticity only

*because of the occurrence of shock waves. Analytic solutions for this

process, in the form of self-similar blast waves 5 , are appropriate at

very high initial overpressure, but in the range of primary interest

to us, with overpressure less than a hundred times ambient, it is

necessary to run one-dimensional fluid codes to calculate the time

evolution of the overheated channel.

we have previously reported6 fluid code studies of this process

for the case in which the heating source has a very smoothly rounded

rj radial profile, e.g. the Bennett profile appropriate for a self-pinched

Aelectron beam. In this case, we found that the channel formation

process went through the following stages: (i) Initially, the gas is

Manuscript submitted April 18, 1980
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at uniform density, but with an overpressure profile corresponding to

the source heating profile. (ii) A rarefaction wave reduces the gas

density within the heating source radius. (iii) An outgoing shock wave

forms near the point of steepest slope of the initial overpressure

profile, and leads to expansion of the gas over a channel broader than

the source radius. (iv) When the shock detaches from the channel, the

entire channel is left at a pressure of about 85-90%e of ambient.

(v) The channel slowly returns to ambient pressure, with a density

rise of about 10% and no further shock formation. (vi) The final

density profile is determined strictly by adiabatic expansion in the

central channel, but the density is further depressed in the radial

wings by the entropy increase attendant upon shock heating. Under

these conditions, we gave an analytic formulation of the density

profile at late times, when pressure balance has been restored.6 This

formulation depended on the "polytropic" assumption that the ratio y of

the specific heat c (at constant pressure) and c (at constant volume)p v

is a constant, which we usually took to be y B c /C 1.4, charac-
p v

teristic of a diatomic gas at moderate temperature. For simplicity

A
and comparability, we used the same assumption in our fluid code runs.

In a real diatomic gas, Y depends on both temperature T and density

. ,and decreases from n- 1.4 at room temperature to less than 1.2 at

T > 30000K. The purpose of the present rate is to include this

variation in the analytic formulation, which becomes possible because

a generalized form of y can be expressed as a function of specific

energy c, with practically no further dependence on c. We also show

2



the effect of including real gas thermodynamics in the fluid code

runs.

In another previous report 7 , we have shown that the hydrodynamic

evolution becomes somewhat more complex, with ringing of the channel

and sometimes multiple shocks occurring, if the radial profile of the

heating source is squarer in shape, or has discontinuities. These

complications are treated only in passing in the present note.

In Sec. 2, we give a convenient summary and formulation of the

real gas thermodynamic properties required. In Sec. 3, we include

these properties in a semi-analytic model of the density profile at

late time. In Sec. 4, we compare the results of the model with

numerical studies performed on the one-dimensional (cylindrical)

Eulerian flux-corrected transport fluid code FASTD. 6 9

* I+
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2. Real Gas Thermodynamics

A particularly convenient way of specifying the thermodynamic

properties of a real gas is by means of a constitutive equation,

P/P = ef(c,p), (1)

supplemented by an ideal gas equation of state,

P/p = (kB/M) [l + a (C,p)]T, (2)

where P is pressure, 0 is density, e is specific energy (thermal plus

internal, but excluding any macroscopic kinetic energy), T is tempera-

ture, kB is Boltzmann's constant, M is the molecular mass, and f and a

are functions that characterize the gas species. The quantity a

measures the degree of dissociation and ionization; it is unity for

the undissociated, unionized state, and is equal in general to the mean

number of dissociated atoms, ions and electrons per molecule. The

quantity f is a generalization of the adiabatic index y, defined by

y c /Cv, (3)

pp
2for the case in which the specific heats c (at constant pressure) and

c (at constant volume) are constant. In this case,

f(C,P) = Y - 1, (4)

and the adiabatic relations

P/p7 . const , (5)

I; L/P - const (6)

can be used to characterize adiabatic flows.
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In a diatomic gas such as air, f(,p) ranges from 2/3 at cryogenic

temperatures where e consists entirely of translational thermal energy,

to 2/5 at room temperature, where rotational states are fully excited,

to 2/7 at T N 30000K, where vibrational states are fully excited. Up

to this point, f(e,p) is quite independent of density. At still higher

temperatures, f(e,p) decreases further as electronic excitation, disso-

ciation, and ionization begin to contribute to e. Since the latter two

processes change the number of particles, they lead to a p dependence

of f. However the particular form (1) was chosen because this p

dependence remains minimal, even in this regime. This point is

illustrated in Fig. 1, where f(e,p), taken from the tabulated values

of Ref. 10, is plotted for air at a variety of densities, at tempera-

tures up to N 10,000OK, and it is seen that varying p over a wide range

changes f(e,p) no more than 10%. Consequently, we can regard f as a

function of e alone,

f ( , ) -- f(E), (7)

which leads to considerable simplification in our analysis. If f were

regarded as a function of T and p, or if a relation were written

between E and T, the p dependence would be much stronger. A second

advantage of the formulation used in Eqs. (1) and (2) is that, for
9

most purposes, we do not need to know T, so that only Eq. (1) is used.

5

.'A ".



3. Density Profile at Late Times

The first law of thermodynamics,

Tds = de + Pdp-1 (8)

can be rewritten in the form

k_ . de M ds (9)
p Ef(e) kB l+a '

where s is the specific entropy and Eqs. (1) and (2) have been used.

To find the density profile at late times, when P = P is uniform ata

the ambient value, we can integrate (9) along the trajectory of an

element of gas, to obtain

p (r,-) = exp d As (10)
E(ro 0) )

where an element of gas at r0 initially moves to r at t , is theo s

integral of the second term in (9), and we have used the fact that

P = a is uniform at t = 0. In Eq. (10), the value of c(r,-) is deter-

mined by applying Eq. (1):

P a/P(r,-) = e(r,-)f[ (r,-)]. (11)

Usually the energy deposition profile e(r ,0) is given; it is relatedo

to the initial pressure profile by

P(ro,0)/p a (ro,0)f[ (r ,0)]. (12)



Finally, r is related to r by integrating the relation0

P (r ,0)o0 dr 2

p(r,-) dr
0

to obtain
r

ro 2  f dr' 2r'r' (13)
0

Equations (10) - (13), along with the tabulated function f(c) from

Fig. 1, determine the density profile at t = ,if A can be specified.
s

An entropy change occurs only when the outgoing shock wave passes

over a particular element of gas. This does not occur at all in the

6central region of the channel and only once in the outer range of r.

Thus

k B 1 + a

where the integral is taken over the shock front, for conditions

prevailing when the shock passes over a particular element of gas.

Shock heating typically results in a fairly small change in the

final density profile, so a lowest order approximation is given by

simply neglecting A . In Reference 6, we went one step further bys

giving a heuristic formula for A (r ) for the case of a Bennett heatings 0

profile, based on empirical results of fluid code runs with y = 7/5, as

well as the Rankine-Hugoniot relations and certain other general formal

requirements.

!1
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The result given there was

exp(s) 2Z (6 - p-/ + 7/5 (14)
s 6p-/P 1/

with the ratio of densities downstream and upstream of the shock front

given by

1 , r /r <0.8

P- 1 + 0.33[P(ro'0)/P]/4(ro/rB)-  0.8 r/r3

1 + 1.7 [P(roO)/Pa]'/4(ro/rB), 3 < r /r

We see little hope of writing down any improved closed form for A that
s

applies to the more complex situation considered here, where Y is no

longer constant. However the effect of the shock is merely a small to

moderate correction to the density profile at late times, and further-

more the shock effect is greatest in the radial wings, where the gas is

not too hot and the assumption that y = 7/5 is closer to reality. Thus

we shall simply continue to use Eqs. (15) and (16) in Eq. (10) to

specify the density profile. As we shall see, the results of this

procedure are quite acceptable when compared to fluid code runs.

.... 8



4. Results

It is most important to use Eq. (1) with the correct dependence

f(c) to calculate the initial overpressure profile P(r,O) resulting

from a given profile e(r,0) of energy deposited by the source. As

seen in Fig. 1, the pressure can be overestimated by a factor of two

or more if the assumption y = 7/5, i.e. f(e) = 0.4, is used to calcu-

late P(r,0). In more familiar terms, the specific heat increases

significantly with temperature [but it is more convenient to work with

the function f(e) defined in Eq. (1), rather than with the specific

heat.] The shape as well as the amplitude of the pressure profile is

altered; in general, P(r,0) will be broader and more square-shaped

than e(r,0), as seen in Figs. 2 and 3.

In Figs. 2-9, the gas is taken to be air at standard temperature

at pressure before heating by the external source. The energy deposi-

tion Profile of the external source is taken to be Bennett, i.e. S(r,

t = 0) - e has a Bennett shape (where E is the ambient specifica a

energy), e(r,t = 0) = e + C (0,0)

a (1+ r2 / a 2 )f Dimensionless units for r and t are used in the figures, r/a, and

t = csat/a, where csa is the ambient sound speed. We also use dimen-

sionless units for P and p, defined by = P/P and p = p/p where
P nda at

P and Pa are the ambient values. The overpressure factor P, defined

by

P "0, 0) 1,

is frequently used to characterize the strength of the initial energy

[9



deposition. For the polytropic model which we studied previously,

this choice of units reduced the problem to completely dimensionless

form; this is not true in the real gas, however, since f(e) depends

on the specific energy density e and cannot be scaled out.

In order to examine the effect of real-gas thermodynamics on the

hydrodynamic flow subsequent to energy deposition, we shall compare

cases in which e(r,0) has a Bennett profile, and (i) the assumption

y = 7/5 is used to calculate P(r,0) and also to treat the subsequent

expansion, and the amplitude of c(r,0) is such that ] has some giveno

value; (ii) the accurate dependence of f(s) is used to calculate

P(r,O) and also to treat the subsequent expansion, and the amplitude

of (r,O) is chosen such that _ has the same as in case (i). Case0

(i) will be referred to as the polytropic case, (ii) as the real gas

case.

Figure 4 shows snapshots of the density profile p(r) at a series

of times, for the real gas case with P = 11.5. The phenomenology ofo

channel formation -- initial rarefaction wave, deepening and broadening

of the channel, shock formation and propagation, density undershoot

at late time, and slow return to pressure balance -- is qualitatively

similar to that seen with the constant y assumption.6 Fig. 5 compares

the pressure profile at a particular time for real gas and polytropic

cases. We see that the shock is a little stronger for the real gas

than for the corresponding polytropic case. To separate the effect

of the broadened P(r,0) 2rofile in the real gas case from the effect

of the variation of f(c) during expansion, we ran another case in

10
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which the P(r,O) profile was calculated from the exact thermodynamics,

but f(e) was set equal to 0.4 during the subsequent expansion. In

this case, shown in Fig. 6, the shock was a little weaker for the real

gas case. Thus both the change in the P(r,0) profile and the varia-

tion of f(e) during the subsequent expansion have some influence on

the phenomenology (and in opposite directions), but the differences

from the ideal-gas case are small, for a given value of P .
0

In Figs. 7 and 8, we compare the time dependence of the on-axis

density p(0,t) for the real gas and polytropic cases. We see that in

the polytropic case, the p(O,t) curve is smooth, dips slightly below

the final equilibrium value and then returns to equilibrium slowly

6
and monotonically , but in the real gas case, the channel density
exhibits weak oscillations. we have shown in previous work7 that this

type of behavior is characteristic of pressure profiles that are

squarer-shaped than Bennett; thus it would appear to be due to the

squaring up of the P(r,0) profile that results when the correct f(e)

is used to calculate P(r,0). However the effect is again small, for

practical purposes.

Finally, in Fig. 9, we compare the results of the model developed

in Sec. 3, Eqs. (10) - (15) with p(r) profiles observed at late times

in a code run. We find that the model gives a good representation of

the density profile at late times, for all cases that have been run.

11



5. Conclusions

It is important to use accurate values of the specific heat, or of

the function f(z), in calculating the initial pressure profile asso-

ciated with a given energy deposition source. Changes in the function

f(c) in air at a few thousand degrees reduce the initial overpressure

by about a factor of two, and also make the initial pressure profile

considerably squarer-shaped than the energy deposition profile.

However the effect of using accurate values of f(e) rather than

a constant value Y = 7/5 during the hydrodynamic expansion is small,

with the most noticeable effect being the slight ringing of the on-axis

density due to the squarer shape of the P(r,O) profile. For most

practical purposes, it is adequate to use y = 7/5 during the expansion,

provided P(r,O) is calculated accurately. If greater accuracy is

needed, it is convenient to formulate the thermodynamic properties of

the gas in terms of the function f(s), rather than through specific

heats or other temperature-dependent quantities. The semi-analytic

model of Sec. 3 gives an accurate representation of the density profile

of the heated channel at late times, when pressure balance has been

restored.

12
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Fig. 1. Thermodynamic properties of air. The function f(c) defined
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various densities: dots correspond to P - 7.0 x 10 " gin/am3

(0.054 atm), squares to p " 3.0 x 10 . 4 gm/cm 3 (0.23 atm),
-3 3

crosses to o - 1.29 x 10 - 3 gm/am3 (1 atm).
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1.0

P

E

0L t I1 2 3 4
r

Fig. 2. Energy deposition profile £(r,t - 0) and initial pressure

profile P(r,t 0), each normalized to the value at r 0,

for a case with initial overpressure factor T - 46. The
0

two curves differ only because of the deviation of the real

gas from polytropic, i.e. the variation of f(s).
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1.0

1 2 3 4

r
* Fig. 3. Energy deposition profile £(r,t - 0) and initial pressure

profile P(r,t - 0), each normalized to the value at r = 0,

, - for a case with initial overpressure factor o - 11.5. The
0

two curves differ only because of the deviation of the real

gas from polytropic, i.e. the variation of f(e).
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Fig. 4. Radial density profile in a real gas at various times. The

energy deposition profile £(r, t - 0) is Bennett, and

corresponds to an overpressure factor - 11.5.
0
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1.0

0.01
12 3

Fig. 5. Radial pressure profile at t 9.0, for a case with ~P 26.1.
0

Curve 1: ideal gas, y =7/5. Curve II: real gas.
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2

1.5-

'I

' 1 -"

0.5

0.0
0 5 10 15 20

r
? Fig. 6. Radial density profile att = 6.33 for two cases with

P 0 - 26.1 and Bennett energy deposition profile. In each

case, the initial pressure profile P(r,O) is calculated

using the real gas function f(e). For Curve I, the

polytropic model with y = 7/5 is used to treat the subsequent

expansion; for Curve II, the real gas properties are used.
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